PS ALGEBRA, AUSARBEITUNG AUFGABE 48

A. GIOIA

Aufgabe 48:

(a) Präzisiere die Aussage, dass die Vervollständigung einen exakten Funktor für endlich erzeugte R-Moduln über einem noetherschen Ring definiert.
(b) Es seien $\mathfrak{p} \subseteq \mathfrak{q} \subseteq R$ Primideale. Vergleiche die Lokalisierungen $R_{\mathfrak{p}}, R_{\mathfrak{q}}$, $\left(R_{\mathfrak{p}}\right)_{\mathfrak{q} R_{\mathfrak{p}}}$ und $\left(R_{\mathfrak{q}}\right)_{\mathfrak{p} R_{\mathfrak{q}}}$.
(c) Es sei $\mathfrak{p} \subseteq R=K\left[x_{1}, \ldots, x_{n}\right]$ ein Primideal und $X=V(\mathfrak{p}) \subseteq K^{n}$ die assoziierte Verschwindungmenge. Interpretiere die Elemente der Lokalisierung $R_{\mathfrak{p}}$ als Keime von Funktionen auf K^{n} längs X, wobei K^{n} mit der ZariskiTopologie versehen sei.
Hinweis: Betrachte zuerst den Fall eines maximalen Ideals $\mathfrak{p}=\left(x_{1}-\right.$ $\left.a_{1}, \ldots, x_{n} a_{n}\right)$. Präzisiere dann den Begriff "Keim einer Funktion längs X " für beliebige X.
a) Let R be a noetherian ring, and I be an ideal of R. Then the completion of R with respect to the I-adic topology is the product $\widehat{R}=\prod_{k=0}^{\infty} I^{k} / I^{k+1}$. More generally, given a finitely generated R-module M we define the completion of M in the I adic topology to be the \widehat{R}-module \widehat{M} given by the product $\prod_{k=0}^{\infty} I^{k} M / I^{k+1} M$. In particular given an ideal J we have defined \widehat{R}-modules \widehat{J} and $\widehat{R / J}$. To say that completing with respect to I is exact means that $\widehat{R / J}$ is isomorphic to $\widehat{R} / \widehat{J}$. Equivalently, this means that if a sequence of finitely generated R-module

$$
0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0
$$

is exact (see exercise 42), then the sequence

$$
0 \rightarrow \widehat{M} \rightarrow \widehat{N} \rightarrow \widehat{P} \rightarrow 0
$$

is exact.
b) Assume $\mathfrak{p} \subsetneq \mathfrak{q}$, then $R \backslash \mathfrak{q} \subsetneq R \backslash \mathfrak{p}$. Hence the ideal generated by \mathfrak{q} in $R_{\mathfrak{p}}$ is whole $R_{\mathfrak{p}}$, because some element of \mathfrak{q} is invertible in $R_{\mathfrak{p}}$. So $\left(R_{\mathfrak{p}}\right)_{\mathfrak{q} R_{\mathfrak{p}}}$ does not make sense, since $\mathfrak{q} R_{\mathfrak{p}}$ is not prime. So we consider only the rings $R_{\mathfrak{p}}, R_{\mathfrak{q}}$, and $\left(R_{\mathfrak{q}}\right)_{\mathfrak{p} R_{\mathfrak{q}}}$. We will prove that $\left(R_{\mathfrak{q}}\right)_{\mathfrak{p} R_{\mathfrak{q}}}$ and $R_{\mathfrak{p}}$ are isomorphic.

Writing all the natural maps we get a solid diagram

and our goal is to prove that there exists a ring homomorphism as in the dotted arrow above (and then prove it is an isomorphism). If x is in $R \backslash \mathfrak{p}$, then either it is also in $R \backslash \mathfrak{q}$, and then the image of x in $R_{\mathfrak{q}}$ is invertible, or it is in $\mathfrak{q} \backslash \mathfrak{p}$. In the latter case the image of x in $R_{\mathfrak{q}}$ is then in $R_{\mathfrak{q}} \backslash \mathfrak{p} R_{\mathfrak{q}}$. In fact, if the image of x was in $\mathfrak{p} R_{\mathfrak{q}}$, we would be able to write $x=p(r / s)$ for some $p \in \mathfrak{p}, r \in R$, and $s \in R \backslash \mathfrak{q}$. Then there would be a $t \in R \backslash \mathfrak{q}$ such that $t(x s-p r)=0$. Since p is in \mathfrak{p} also prt is in \mathfrak{p}, then also txs should be in \mathfrak{p}. But this is not possible, since we supposed
that t, x, and s are not in \mathfrak{p}, and this is a prime ideal. So the image of x in $R_{\mathfrak{q}}$ is in $R_{\mathfrak{q}} \backslash \mathfrak{p} R_{\mathfrak{q}}$, and hence x becomes invertible in $\left(R_{\mathfrak{q}}\right)_{\mathfrak{p} R_{\mathfrak{q}}}$. So by the universal property of the localization $R_{\mathfrak{p}}$ we get the dotted arrow above.
To construct the inverse one can proceed in a similar way: the natural map $R \rightarrow R_{\mathfrak{p}}$ factors through $R_{\mathfrak{q}}$, since every element of $R \backslash \mathfrak{q}$ is invertible in $R_{\mathfrak{p}}$. We obtain a $\operatorname{map} R_{\mathfrak{q}} \rightarrow R_{\mathfrak{p}}$, and by a similar reasoning this map factors through $\left(R_{\mathfrak{q}}\right)_{\mathfrak{p} R_{\mathfrak{q}}}$. This is an inverse to the previously defined map, so we are done.
c) First we define the ring of germs of rational functions defined along X. Let T be the ring of rational functions defined along X, namely the ring

$$
T=\left\{f: U \rightarrow \mathbb{R}, U \subseteq K^{n} \text { open with } X \subseteq U, f=\frac{f_{1}}{f_{2}} \text { with } f_{1}, f_{2} \in K\left[x_{1}, \ldots, x_{n}\right]\right.
$$

and for all $x \in U$ we have $\left.f_{2}(x) \neq 0\right\}$.
The ring S of germs of rational functions defined along X is the quotient of T by the equivalence relation \sim, where $f \sim g$ if and only if there exists $U \subseteq K^{n}$ Zariski open set, such that $X \subseteq U$ and for all $x \in U$ we have $f(x)=g(x)$ (equivalently: the quotient by the ideal $[0]_{\sim}$ of functions that are equivalent to the constant function 0 under the equivalence relation \sim). Since any polynomial in R is a rational function we have a natural ring homomorphism $R \rightarrow S$. If $h \in R$ is such that $h(x)$ is not zero for all x in X, then h has an inverse in S. So the inclusion factors through $R_{\mathfrak{p}}$, and we get a ring homomorphism $R_{\mathfrak{p}} \rightarrow S$.

On the other hand, we can define a ring homomorphism $\varphi: T \rightarrow R_{\mathfrak{p}}$ by sending the quotient of two polynomials f_{1} / f_{2} to the fraction f_{1} / f_{2} in $R_{\mathfrak{p}}$. (This can be done since f_{2} is not in \mathfrak{p}. In fact $f_{2}(x)$ is different from zero for all $x \in X$, and X is by definition $V(\mathfrak{p})$.) If $f=f_{1} / f_{2}$ and $g=g_{1} / g_{2}$ are rational functions with the same image in $R_{\mathfrak{p}}$ under φ, then there exists h not in \mathfrak{p} such that $h\left(f_{1} g_{2}-g_{1} f_{2}\right)=0$ in R. Since h, g_{2}, and f_{2} are not in \mathfrak{p}, given $x \in X=V(\mathfrak{p})$, we have that $h(x), g_{2}(x)$, and $f_{2}(x)$ are not zero. So

$$
h(x)\left(f_{1}(x) g_{2}(x)-g_{1}(x) f_{2}(x)\right)=0
$$

implies that

$$
f_{1}(x) g_{2}(x)=g_{1}(x) f_{2}(x)
$$

and that

$$
f_{1}(x)\left(f_{2}(x)\right)^{-1}=g_{1}(x)\left(g_{2}(x)\right)^{-1}
$$

so that $f(x)=g(x)$ for all x in X. Moreover the relation above holds for all x such that $h(x), g_{2}(x)$, and $f_{2}(x)$ are not zero. This is a Zariski open set containing X. Hence, we proved that if f and g have the same image under φ, then $f \sim g$. It is easy to see that also the converse holds, so that $f \sim g$ if and only if $\varphi(f)=\varphi(g)$ (equivalently: the kernel of φ is equal to the ideal $[0]_{\sim}$). So φ induces a ring homomorphism $S \rightarrow R_{\mathfrak{p}}$. The two maps that we have defined are inverse to each other, so we are done.

As an example, consider the prime ideal (x) in $R=\mathbb{R}[x, y]$. Elements of $R_{(x)}$ are fractions $f(x, y)=p(x, y) / q(x, y)$ of polynomials such that $q(0, y)$ is not zero. So they can be seen as rational functions defined on the line $x=0$. If two rational functions $f(x, y)=p(x, y) / q(x, y)$ and $f^{\prime}(x, y)=p^{\prime}(x, y) / q^{\prime}(x, y)$ are equal in $R_{(x)}$, then $p(x, y) q^{\prime}(x, y)=q(x, y) p^{\prime}(x, y)$, so on the points of the plane where both $q(x, y)$ and $q^{\prime}(x, y)$ are defined (which is by defnition a Zariski open set, as it is the complement of the Zariski closed set given by the union of the zero-sets of $q(x, y)$ and of $\left.q^{\prime}(x, y)\right)$), we have $f(x, y)=f^{\prime}(x, y)$. In this sense the elements of $R_{(x)}$ can be seen as germs.

