
PS ALGEBRA, AUSARBEITUNG AUFGABE 48

A. GIOIA

Aufgabe 48:

(a) Präzisiere die Aussage, dass die Vervollständigung einen exakten Funktor
für endlich erzeugte R-Moduln über einem noetherschen Ring definiert.

(b) Es seien p ⊆ q ⊆ R Primideale. Vergleiche die Lokalisierungen Rp, Rq,
(Rp)qRp

und (Rq)pRq
.

(c) Es sei p ⊆ R = K[x1, . . . , xn] ein Primideal und X = V (p) ⊆ Kn die assozi-
ierte Verschwindungmenge. Interpretiere die Elemente der Lokalisierung
Rp als Keime von Funktionen auf Kn längs X, wobei Kn mit der Zariski-
Topologie versehen sei.
Hinweis: Betrachte zuerst den Fall eines maximalen Ideals p = (x1 −
a1, . . . , xnan). Präzisiere dann den Begriff “Keim einer Funktion längs X”
für beliebige X.

a) Let R be a noetherian ring, and I be an ideal of R. Then the completion of R with

respect to the I-adic topology is the product R̂ =
∏∞

k=0 I
k/Ik+1. More generally,

given a finitely generated R-module M we define the completion of M in the I-

adic topology to be the R̂-module M̂ given by the product
∏∞

k=0 I
kM/Ik+1M .

In particular given an ideal J we have defined R̂-modules Ĵ and R̂/J . To say

that completing with respect to I is exact means that R̂/J is isomorphic to R̂/Ĵ .
Equivalently, this means that if a sequence of finitely generated R-module

0→M → N → P → 0

is exact (see exercise 42), then the sequence

0→ M̂ → N̂ → P̂ → 0

is exact.

b) Assume p ( q, then R \q ( R \p. Hence the ideal generated by q in Rp is whole
Rp, because some element of q is invertible in Rp. So (Rp)qRp

does not make sense,
since qRp is not prime. So we consider only the rings Rp, Rq, and (Rq)pRq

. We
will prove that (Rq)pRq

and Rp are isomorphic.

Writing all the natural maps we get a solid diagram

R //

��

Rp

��
Rq

// (Rq)pRq

and our goal is to prove that there exists a ring homomorphism as in the dotted
arrow above (and then prove it is an isomorphism). If x is in R \ p, then either it
is also in R \ q, and then the image of x in Rq is invertible, or it is in q \ p. In the
latter case the image of x in Rq is then in Rq \ pRq. In fact, if the image of x was
in pRq, we would be able to write x = p(r/s) for some p ∈ p, r ∈ R, and s ∈ R \ q.
Then there would be a t ∈ R \ q such that t(xs− pr) = 0. Since p is in p also prt
is in p, then also txs should be in p. But this is not possible, since we supposed
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that t, x, and s are not in p, and this is a prime ideal. So the image of x in Rq is in
Rq \ pRq, and hence x becomes invertible in (Rq)pRq

. So by the universal property
of the localization Rp we get the dotted arrow above.

To construct the inverse one can proceed in a similar way: the natural map R→ Rp

factors through Rq, since every element of R \ q is invertible in Rp. We obtain a
map Rq → Rp, and by a similar reasoning this map factors through (Rq)pRq

. This
is an inverse to the previously defined map, so we are done.

c) First we define the ring of germs of rational functions defined along X. Let T
be the ring of rational functions defined along X, namely the ring

T ={f : U → R, U ⊆ Kn open with X ⊆ U, f =
f1
f2

with f1, f2 ∈ K[x1, . . . , xn]

and for all x ∈ U we have f2(x) 6= 0}.
The ring S of germs of rational functions defined along X is the quotient of T by
the equivalence relation ∼, where f ∼ g if and only if there exists U ⊆ Kn Zariski
open set, such that X ⊆ U and for all x ∈ U we have f(x) = g(x) (equivalently: the
quotient by the ideal [0]∼ of functions that are equivalent to the constant function 0
under the equivalence relation ∼). Since any polynomial in R is a rational function
we have a natural ring homomorphism R → S. If h ∈ R is such that h(x) is not
zero for all x in X, then h has an inverse in S. So the inclusion factors through Rp,
and we get a ring homomorphism Rp → S.

On the other hand, we can define a ring homomorphism ϕ : T → Rp by sending the
quotient of two polynomials f1/f2 to the fraction f1/f2 in Rp. (This can be done
since f2 is not in p. In fact f2(x) is different from zero for all x ∈ X, and X is by
definition V (p).) If f = f1/f2 and g = g1/g2 are rational functions with the same
image in Rp under ϕ, then there exists h not in p such that h(f1g2 − g1f2) = 0 in
R. Since h, g2, and f2 are not in p, given x ∈ X = V (p), we have that h(x), g2(x),
and f2(x) are not zero. So

h(x)(f1(x)g2(x)− g1(x)f2(x)) = 0

implies that
f1(x)g2(x) = g1(x)f2(x)

and that
f1(x)(f2(x))−1 = g1(x)(g2(x))−1

so that f(x) = g(x) for all x in X. Moreover the relation above holds for all x such
that h(x), g2(x), and f2(x) are not zero. This is a Zariski open set containing X.
Hence, we proved that if f and g have the same image under ϕ, then f ∼ g. It is
easy to see that also the converse holds, so that f ∼ g if and only if ϕ(f) = ϕ(g)
(equivalently: the kernel of ϕ is equal to the ideal [0]∼). So ϕ induces a ring
homomorphism S → Rp. The two maps that we have defined are inverse to each
other, so we are done.

As an example, consider the prime ideal (x) in R = R[x, y]. Elements of R(x) are
fractions f(x, y) = p(x, y)/q(x, y) of polynomials such that q(0, y) is not zero. So
they can be seen as rational functions defined on the line x = 0. If two rational
functions f(x, y) = p(x, y)/q(x, y) and f ′(x, y) = p′(x, y)/q′(x, y) are equal in R(x),
then p(x, y)q′(x, y) = q(x, y)p′(x, y), so on the points of the plane where both
q(x, y) and q′(x, y) are defined (which is by defnition a Zariski open set, as it is the
complement of the Zariski closed set given by the union of the zero-sets of q(x, y)
and of q′(x, y))), we have f(x, y) = f ′(x, y). In this sense the elements of R(x) can
be seen as germs.


